If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8q^2+6q-7=0
a = 8; b = 6; c = -7;
Δ = b2-4ac
Δ = 62-4·8·(-7)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{65}}{2*8}=\frac{-6-2\sqrt{65}}{16} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{65}}{2*8}=\frac{-6+2\sqrt{65}}{16} $
| 4(x-5)+8=36 | | 0=-2z^2+9z-15 | | x-6^2=20-2x | | X+(.60x)=152000 | | 5x±8=2x+23 | | (7+x)^+(7-x)^=130 | | 71x^2-127x-300=0 | | H=-4.9t^+25t | | -15−13j=3−10j | | x-8-4x=-25 | | 7=1/3w | | 3x+52-19=180 | | 3x+81-9=180 | | 3(x-6)+4=5(x+)-12 | | 720–4c=40 | | 6p+5=-1 | | 79-(5x+6)=5(x+8)+x | | 9-(5x+6)=5(x+8)+x | | 29x+3=16x-3+16x-3 | | -60=w–20 | | 60=w–20 | | 4d+620=-100 | | 4d+620=100 | | -3=b+5 | | 3=b+5 | | r+35=-15 | | r+35=15 | | y+625=-45 | | y+625=45 | | 350=-7r+350 | | -5q+60=-15 | | 2x-7÷3=5 |